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• An extensive literature considers optimal monetary policy under

the assumption of rational expectations

• Key conclusion: important to take account of effects of

commitment of future policy on PS expectations

• Implications:

– optimal commitment 6= discretionary policy

– optimal policy should be history-dependent
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• Example: optimal policy problem in CGG (1999):

min E0

∞∑
t=0

βt[π2
t + λ(xt − x∗)2]

s.t. πt = κxt + βEtπt+1 + ut

• optimal commitment⇒ long-run average inflation π∗ = 0

— whereas discretion results in π > 0 on average (if x∗ > 0)

• optimal commitment⇒ should subsequently undo price

changes due to cost-push shocks

— whereas discretion would “let bygones be bygones”
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• Question: isn’t it unrealistic to assume that any pattern created

by systematic policy must be correctly anticipated by the private

sector?

• Perhaps such an assumption exaggerates the importance of

commitment and history-dependence
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• An alternative: assume a particular model of how expectations

are formed from past observations

— Example: Orphanides and Williams (2005): least-squares

learning⇒ a different output/inflation variability tradeoff than

CB would expect if assumes RE

— More aggressive inflation control in face of cost-push shocks

is optimal, within a simple family of linear policies

— Gaspar, Smets and Vestin (2005, 2006): dynamic

optimization by a CB that recognizes that PS expectations result

from least-squares learning
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• Objection: choosing optimal policy for a specific model of

expectations may exaggerate CB’s ability to model PS behavior,

lead to overly ambitious attempts to manipulate expectations

— the pitfall that RE were introduced to avoid!

• Another alternative: let CB recognize that PS expectations may

differ from the probabilities implied by its own model

— not assume that it knows what PS expectations must be, in

case of a particular policy rule

— might be any beliefs, among those not too different from what

CB’s model implies (“NRE”)

— choose the policy that is least vulnerable to deviation of PS

expectations from model-consistency

— as in theories of “ambiguity aversion,” “robust control”
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• Not a standard “robust control” problem:

– control of a forward-looking system: advance commitment

matters

– no uncertainty on part of policymaker about correct model (given

PS expectations)

• Also different from robust control problem for forward-looking

system considered by Hansen and Sargent (2005, chap. 16):

– failure of PS to optimize under RE not due to its uncertainty

about correct model

– the distorted beliefs of PS that matter are those that would be

most inconvenient for the policymaker, not those that would be

most to private agents.
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Application

Policy problem considered under RE by CGG (1999)

• Model: NK Phillips curve w/‘cost-push’ shock

πt = κxt + βÊtπt+1 + ut

— κ > 0, 0 < β < 1, ut exogenous

• Êt[·]: expectation wrt common distorted beliefs of all private

agents

— usual microfoundations of NKPC still apply
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• CB objective: minimize

L0 ≡ E0

∑
t=0

βt[π2
t + λ(xt − x∗)2]

where λ > 0, x∗ ≥ 0.

• Et[·]: expectation under CB beliefs, treated as true

• Law of motion of exogenous state (under CB beliefs):

st+1 = Ast + Bwt+1, wt+1 ∼ N(0, I), i.i.d.

ut = v′st
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• CB strategy: commits itself (at initial date) to a state-contingent

policy

πt = π(ht)

where ht ≡ (st, st−1, . . .), without knowledge of what

distorted private beliefs will be

• Assume no problem implementing the policy: can observe

private expectations then

• Any such strategy uniquely defines evolution {πt, xt} (given

PS beliefs), and hence CB expected losses

• This choice of strategy space not innocuous (as in CGG)!
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Near-Rational Expectations

• PS beliefs must be absolutely continuous wrt truth [over any

finite time interval]

⇒ there exists a process {mt+1} with

mt+1 ≥ 0 a.s., Et[mt+1] = 1.

such that

Êt[Xt+1] = Et[mt+1Xt+1]

for any random Xt+1
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• Degree of distortion of PS beliefs measured by relative entropy

R0 ≡ E0

∞∑
t=0

βtmt+1 log mt+1

as in Hansen-Sargent treatment of robust policy

– a positive-valued, convex function of distorted prob. measure,

uniquely minimized (= 0) when mt+1 = 1 a.s. [case of RE]

– a measure of how easily the distorted beliefs should be

disconfirmed by data [according to CB beliefs]

– discounting at rate β means CB concern with potential PS

misunderstanding doesn’t vanish asymptotically
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• Two possible versions of the “NRE” constraint:

– CB fears PS beliefs m that are worst for its objective L0, subject

to constraint

R0 ≤ R̄,

for some 0 < R̄ < +∞ [Gilboa-Schmeidler]

– CB fears PS beliefs m that maximize

L0 − θR0

for some θ > 0 [Hansen-Sargent; Maccheroni et al.]

• Here use the “multiplier” form
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• Worst-case NRE: given CB policy {πt}, PS beliefs solve

max
{mt+1}

E0

∑
t=0

βt[π2
t + λ(xt − x∗)2]

−θE0

∞∑
t=0

βtmt+1 log mt+1

s.t. πt = κxt + βEt[mt+1πt+1] + ut for each t

Etmt+1 = 1 for each t

• CB chooses {πt} to min this max’d value
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Robustly Optimal Linear Policy

• Here further restrict CB strategy space to conditionally linear

policies of form

πt+1(wt+1) = p0
t + p1′

t wt+1

for some p0
t , p

1
t depending only on ht.

• Note: optimal policy is of this form in case of RE (and p1
t is not

time-varying)
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• Worst-case NRE (1): interior solution exists only if

|p1
t |2 <

θ

β2

κ2

λ
(*)

— otherwise, objective of “perverse agent” is convex, and

worst-case results in unbounded losses for CB

• Obviously, CB should choose policy that satisfies (*) at all times

— contrasts with result under RE: optimal p1 proportional to σu

— at least for large σu, evident that concern for robustness

leads to less sensitivity of inflation to cost-push disturbances
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• Worst-case NRE (2): in the case of a linear policy (p0
t , p

1
t )

satisfying (*), CB fears that PS will expect wt+1 to be

conditionally distributed as N(µt, I), where

– if p1
t = 0, µt = 0, but

– if p1
t 6= 0,

µt = (π̄t − p0
t )

p1
t

|p1
t |2

,

where the worst-case inflation expectation is

π̄t = ∆−1
t

[
p0

t − (πt − ut − κx∗)
βλ

θκ2
|p1

t |2
]

,

∆t ≡ 1− β2

θ

λ

κ2
|p1

t |2 > 0



NBER Summer Institute, July 2006. 17

• Intuition: worst-case NRE distort Êtπt+1 away from p0
t in the

direction opposite to that needed to bring xt closer to x∗

— distortion is greater the larger is |p1
t |, becoming unboundedly

large as the bound (*) is approached

• CB therefore fears output gap

xpess
t − x∗ =

(πt − ut − κx∗)− βp0
t

κ∆t

— larger by factor ∆−1
t ≥ 1 than under RE
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• CB’s Robust Conditionally Linear Policy Problem: choose

{pt} ≡ {p0
t , p

1
t} to

min E0

∞∑
t=0

βtL(pt−1; pt; st)

where

L(p−1; p; s) ≡ 1
2
(p0
−1 + p1′

−1w)2

+
1
2

λ

κ2

[(p0
−1 + p1′

−1w)− u− κx∗ − βp0]2

∆(p1)
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• Solution to this problem is not a linear policy (= inflation a linear

function of ht), except in case of RE

• Useful to consider optimal policy within a more restrictive class:

assume that {p1
t} is a deterministic sequence, chosen to

minimize unconditional expected losses

— again a restriction satisfied by optimal policy under RE

— Optimal policy then makes inflation a linear function of history

of states



NBER Summer Institute, July 2006. 20

• Optimal policy from a timeless perspective: (a) choose {pt} for

t ≥ 0 to

min E

∞∑
t=0

βtL(pt−1; pt; st)

given p−1;

• (b) Self-consistent choice of p−1:

– p1
−1 = p̄1, the constant value that is then optimal for t ≥ 0;

– (p0
−1, s0) drawn from joint distribution equal to the ergodic

distribution for (p0
t−1, st) under the optimal dynamics for t ≥ 0.

• Call {p0
t}, p̄1 that solve this problem the robust linear policy.
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Characterization

• Robust linear policy (1): consider the sub-problem: choose

(robustly) optimal {p0
t} given p1

t = p̄1 (arbitrary vector) for all t

• This is an LQ problem with constant coefficients: optimal policy

a linear function of the history of shocks

• Only difference in this problem due to concern for robustness:

relative weight on second term in loss function

λ

κ2
→ λ

κ2∆

is increased (θ−1 > 0 ⇒ ∆ < 1)
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• Solution:

(1−µL)p0
t = −µEt[(1−βµL−1)−1(1−L−1)ut]+µp̄1′wt

(1)

where 0 < µ < 1 is the smaller root of

βµ2 −
(

1 + β +
κ2∆
λ

)
µ + 1 = 0

• Optimal long-run average inflation target is zero, regardless of

size of x∗, even when θ−1 > 0

— no “inflation bias”!
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• Example: i.i.d. cost-push shocks: wt scalar, ut = σuwt

p0
t = µp0

t−1 − µ(σu − p̄1)wt

• As long as p̄1 < σu (shown below), still optimal to commit to

lower subsequent inflation in response to a positive cost-push

shock, as under RE
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• Note that concern for robustness lowers ∆ ⇒ raises µ

(closer to 1) ⇒ greater intrinsic persistence in average

inflation target

— greater history-dependence is optimal

— for given p̄1, it also increases the optimal response of

subsequent inflation to the shock, both initially, and (even more)

cumulatively
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• Robust linear policy (2): FOCs for optimal choice of sequence

{p1
t}:

E[Lp1(pt−1; pt; st) + βLp1
−1

(pt; pt+1; st+1)] = 0

— we seek steady state p̄1, implicitly defined by

E[Lp1(p0
t−1, p̄

1; p0
t , p̄

1; st)+βLp1
−1

(p0
t , p̄

1; p0
t+1, p̄

1; st+1)] = 0
(2)

• Robust linear policy is then a pair {p0
t}, p̄1, such that {p0

t} is

determined by (1) given p̄1, and p̄1 satisfies (2) given {p0
t}.
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• Optimal policy under RE is a linear policy of same form:

— {p0
t} determined by (1) given p̄1; but µ is root corresponding

to ∆ = 1;

— first term vanishes in (2); in i.i.d. case,

p̄1 = µσu.

• Consequences of concern for robustness:

— ∆ < 1 implies larger value of µ < 1;

— in i.i.d. case, additional term in FOC (2) implies

p̄1 < µσu

— may be much lower in case of large σu (and small θ), as

required by bound (*).
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Figure 1: Variation of p̄1 with σu, under alternative degrees of concern for robustness.
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• Impulse responses to a cost-push shock, under robust linear

policy [i.i.d. case]:

— inflation increased by positive shock (p̄1 > 0), but often by

less than would be true under RE

— CB plans lower inflation in subsequent periods

— cumulative disinflation in periods following shock

− µ

1− µ
(σu − p̄1)

more than offsets the initial inflation (p̄1) if p̄1 < µσu, which is

always the case if θ−1 > 0.

• Because PS inflation expectations fall by less than the amount

of disinflation planned by the CB, CB should commit to even

more subsequent disinflation than otherwise necessary!
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Figure 2: Optimal responses to a positive cost-push shock, with and without concern

for robustness.
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Figure 3: Distortion of PS beliefs, in the worst-case NRE contemplated by the CB

when θ= 0.001.
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Optimizing Policy under Discretion

• How different is optimal commitment from what an optimizing

CB would choose under discretion?

• Suppose each period CB chooses πt after observing st,

making no commitment regarding inflation in subsequent

periods

— in a Markov eq’m, πt will be a time-invariant function of st

— in choosing πt, it is assumed that the function π(·) will

describe CB policy in all later periods
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• Optimization by CB under discretion implies that for any state

st, π̄(st) solves the problem

min
πt

V (πt; st), (3)

where V (πt; st) is expected CB loss from t onward, given

choice of πt and expected policy π̄ in all later periods.
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• Given expected CB behavior of this kind, worst-case NRE

beliefs solve

max
mt+1(·)

1
2
[π2

t + λ(xt − x∗)2]− θEtβ
tmt+1 log mt+1

+ βEtV (π̄(st+1); st+1), (4)

where xt satisfies

πt = κxt + βEt[mt+1π̄(st+1)] + ut



NBER Summer Institute, July 2006. 36

• A robust MPE is then a pair of functions π̄(·) and V (·; ·) such

that

[i] for any pair (πt; st), V (πt; st) is the maximized value of

(4); and

[ii] for any state st, π̄(st) is the inflation rate that solves the

problem (3).

• A robust linear MPE is a robust MPE in which π̄(·) is a linear

function of the state,

π̄(st) = π∗ + d′st
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• Previous characterization of worst-case beliefs still applies

• Hence π̄(st) solves

min
πt

L(πt; p̄(st); st)

• Case of i.i.d. shocks: this has one, two, or zero linear solutions,

depending on the size of σu

— when two solutions, MPE on lower branch are

“expectationally stable”
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Figure 4: Varying numbers of linear MPE, depending on size of cost-push shocks.
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• Average inflation rate in robust linear MPE:

π∗ =
λκx∗

κ2∆̄ + (1− β)λ
> 0

— higher the smaller is ∆̄, so inflation bias is increased by

concern for robustness
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• Response to cost-push shocks in robust linear MPE [i.i.d. case]:

p̄1 =
λ

κ2∆̄ + λ
σu

— as concern for robustness lowers ∆̄, p̄1 is higher than under

RE

— thus concern for robustness moves p̄1 under discretion

farther from the value associated with optimal linear

commitment
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Figure 5: Variation of p̄1 with σu, under discretionary policy and under an optimal

commitment.
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Conclusions

• It is possible to analyze optimal policy for a central bank that

recognizes that PS expectations may not be model-consistent,

without committing oneself to a particular model of

expectational error

• Even when the CB’s uncertainty about PS expectations is

considerable (the case of low θ), calculation of the effects of PS

anticipations of the systematic component of policy is still quite

important

— commitment still important

— optimal policy still history-dependent
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• It may well be optimal for CB to allow less immediate impact of

cost-push shocks on inflation, when cannot be certain PS will

correctly anticipate policy, as argued by Orphanides and

Williams

— yet at the same time, it is typically desirable to increase the

sensitivity of inflation to past shocks




